Transcriptome and metabolome comprehensive analysis reveal the molecular basis of slow-action and non-repellency of cycloxaprid against an eusocial pest, Solenopsis invicta

Author:

Du Chengju,Jiang Kaibin,Xu Zhiping,Wang Lei,Chen Jie,Wang Cai

Abstract

The eusocial pest, red imported fire ant (Solenopsis invicta), is a highly invasive species that poses significant threats to public safety, agriculture, and the ecological environment. Cycloxaprid, a newly identified effective, slow-acting, and non-repellent insecticide against S. invicta, allows contaminated individuals to transfer the insecticide among nestmates through body contact. However, the molecular-level changes occurring in S. invicta post cycloxaprid exposure and any molecular alterations contributing to the slow demise or decreased sensitivity remain unclear. In this study, transcriptomic and metabolomic techniques were used to investigate the molecular mechanisms of S. invicta exposed to cycloxaprid. Differential analysis results revealed 275, 323, and 536 differentially expressed genes at 12, 24, and 48 h, respectively. Genes involved in lipid and energy metabolism, DNA integration, and hormone synthesis were largely upregulated at 12 h, suggesting S. invicta might actively resist cycloxaprid impacts, and predominantly downregulated at 48 h, indicating further functional impairment and impending death. Also, we observed an imbalance in olfactory perception pathways at 12 h, which may indicate a disruption in the olfactory system of S. invicta. Metabolomic results showed that the regulation of most differential metabolites (DMs) was consistent with the expression changes of their related DEGs at different time points. Our study provides insights into the mechanism underlying slow-acting and non-repellent properties of cycloxaprid against S. invicta.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3