Optimization of Left Ventricle Pace Maker Location Using Echo-Based Fluid-Structure Interaction Models

Author:

Fan Longling,Yao Jing,Wang Liang,Xu Di,Tang Dalin

Abstract

IntroductionCardiac pacing has been an effective treatment in the management of patients with bradyarrhythmia and tachyarrhythmia. Different pacemaker location has different responses, and pacemaker effectiveness to each individual can also be different. A novel image-based ventricle animal modeling approach was proposed to optimize ventricular pacemaker site for better cardiac outcome.MethodOne health female adult pig (weight 42.5 kg) was used to make a pacing animal model with different ventricle pacing locations. Ventricle surface electric signal, blood pressure and echo image were acquired 15 min after the pacemaker was implanted. Echo-based left ventricle fluid-structure interaction models were constructed to perform ventricle function analysis and investigate impact of pacemaker location on cardiac outcome. With the measured electric signal map from the pig associated with the actual pacemaker site, electric potential conduction of myocardium was modeled by material stiffening and softening in our model, with stiffening simulating contraction and softening simulating relaxation. Ventricle model without pacemaker (NP model) and three ventricle models with the following pacemaker locations were simulated: right ventricular apex (RVA model), posterior interventricular septum (PIVS model) and right ventricular outflow tract (RVOT model). Since higher peak flow velocity, flow shear stress (FSS), ventricle stress and strain are linked to better cardiac function, those data were collected for model comparisons.ResultsAt the peak of filling, velocity magnitude, FSS, stress and strain for RVOT and PIVS models were 13%, 45%, 18%, 13% and 5%, 30%, 10%, 5% higher than NP model, respectively. At the peak of ejection, velocity magnitude, FSS, stress and strain for RVOT and PIVS models were 50%, 44%, 54%, 59% and 23%, 36%, 39%, 53% higher than NP model, respectively. RVA model had lower velocity, FSS, stress and strain than NP model. RVOT model had higher peak flow velocity and stress/strain than PIVS model. It indicated RVOT pacemaker site may be the best location.ConclusionThis preliminary study indicated that RVOT model had the best performance among the four models compared. This modeling approach could be used as “virtual surgery” to try various pacemaker locations and avoid risky and dangerous surgical experiments on real patients.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3