Inhibition of Small-Conductance Calcium-Activated Potassium Current (IK,Ca) Leads to Differential Atrial Electrophysiological Effects in a Horse Model of Persistent Atrial Fibrillation

Author:

Fenner Merle Friederike,Gatta Giulia,Sattler Stefan,Kuiper Marion,Hesselkilde Eva Melis,Adler Ditte M. T.,Smerup Morten,Schotten Ulrich,Sørensen Ulrik,Diness Jonas Goldin,Jespersen Thomas,Verheule Sander,Van Hunnik Arne,Buhl Rikke

Abstract

BackgroundSmall-conductance Ca2+-activated K+ (KCa2) channels have been proposed as a possible atrial-selective target to pharmacologically terminate atrial fibrillation (AF) and to maintain sinus rhythm. However, it has been hypothesized that the importance of the KCa2 current—and thereby the efficacy of small-conductance Ca2+-activated K+ current (IK,Ca) inhibition—might be negatively related to AF duration and the extent of AF-induced remodeling.Experimental Approach and MethodsTo address the hypothesis of the efficacy of IK,Ca inhibition being dependent on AF duration, the anti-arrhythmic properties of the IK,Ca inhibitor NS8593 (5 mg/kg) and its influence on atrial conduction were studied using epicardial high-density contact mapping in horses with persistent AF. Eleven Standardbred mares with tachypacing-induced persistent AF (42 ± 5 days of AF) were studied in an open-chest experiment. Unipolar AF electrograms were recorded and isochronal high-density maps analyzed to allow for the reconstruction of wave patterns and changes in electrophysiological parameters, such as atrial conduction velocity and AF cycle length. Atrial anti-arrhythmic properties and adverse effects of NS8593 on ventricular electrophysiology were evaluated by continuous surface ECG monitoring.ResultsIK,Ca inhibition by NS8593 administered intravenously had divergent effects on right and left AF complexity and propagation properties in this equine model of persistent AF. Despite global prolongation of AF cycle length, a slowing of conduction in the right atrium led to increased anisotropy and electrical dissociation, thus increasing AF complexity. In contrast, there was no significant change in AF complexity in the LA, and cardioversion of AF was not achieved.ConclusionsIntra-atrial heterogeneity in response to IK,Ca inhibition by NS8593 was observed. The investigated dose of NS8593 increased the AF cycle length but was not sufficient to induce cardioversion. In terms of propagation properties during AF, IK,Ca inhibition by NS8593 led to divergent effects in the right and left atrium. This divergent behavior may have impeded the cardioversion success.

Funder

Horizon 2020

Foreningen KUSTOS af 1881

Kirsten og Freddy Johansens Fond

Oda og Hans Svenningsens Fond

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3