Differences of energy adaptation strategies in Tupaia belangeri between Pianma and Tengchong region by metabolomics of liver: Role of warmer temperature

Author:

Feng Jiahong,Jia Ting,Wang Zhengkun,Zhu Wanlong

Abstract

Global warming is becoming the future climate trend and will have a significant impact on small mammals, and they will also adapt at the physiological levels in response to climate change, among which the adaptation of energetics is the key to their survival. In order to investigate the physiological adaptation strategies in Tupaia belangeri affected by the climate change and to predict their possible fate under future global warming, we designed a metabonomic study in T. belangeri between two different places, including Pianma (PM, annual average temperature 15.01°C) and Tengchong (TC, annual average temperature 20.32°C), to analyze the differences of liver metabolite. Moreover, the changes of resting metabolic rate, body temperature, uncoupling protein 1content (UCP1) and other energy indicators in T. belangeri between the two places were also measured. The results showed that T. belangeri in warm areas (TC) reduced the concentrations of energy metabolites in the liver, such as pyruvic acid, fructose 6-phosphate, citric acid, malic acid, fumaric acid etc., so their energy metabolism intensity was also reduced, indicating that important energy metabolism pathway of glycolysis and tricarboxylic acid cycle (TCA) pathway reduced in T. belangeri from warmer habitat. Furthermore, brown adipose tissue (BAT) mass, UCP1 content and RMR in TC also decreased significantly, but their body temperature increased. All of the results suggested that T. belangeri adapt to the impact of warm temperature by reducing energy expenditure and increasing body temperature. In conclusion, our research had broadened our understanding of the physiological adaptation strategies to cope with climate change, and also provided a preliminary insight into the fate of T. belangeri for the future global warming climate.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3