Hemocompatibility of micropatterned biomaterial surfaces is dependent on topographical feature size

Author:

Fallon Meghan E.,Le Hillary H.,Bates Novella M.,Yao Yuan,Yim Evelyn K.F.,Hinds Monica T.,Anderson Deirdre E.J.

Abstract

Small-diameter synthetic vascular grafts that have improved hemocompatibility and patency remain an unmet clinical need due to thrombosis. A surface modification that has potential to attenuate these failure mechanisms while promoting an endothelial layer is the micropatterning of luminal surfaces. Anisotropic features have been shown to downregulate smooth muscle cell proliferation, direct endothelial migration, and attenuate platelet adhesion and activation. However, the effect of micropatterning feature size and orientation relative to whole blood flow has yet to be investigated within a systematic study. In this work, hemocompatibility of micropattern grating sizes of 2, 5, and 10 µm were investigated. The thrombogenicity of the micropattern surface modifications were characterized by quantifying FXIIa activity, fibrin formation, and static platelet adhesion in vitro. Additionally, dynamic platelet attachment and end-point fibrin formation were quantified using an established, flowing whole blood ex vivo non-human primate shunt model without antiplatelet or anticoagulant therapies. We observed a higher trend in platelet attachment and significantly increased fibrin formation for larger features. We then investigated the orientation of 2 µm gratings relative to whole blood flow and found no significant differences between the various orientations for platelet attachment, rate of linear platelet attachment, or end-point fibrin formation. MicroCT analysis of micropatterned grafts was utilized to quantify luminal patency. This work is a significant step in the development of novel synthetic biomaterials with improved understanding of hemocompatibility for use in cardiovascular applications.

Funder

National Institutes of Health

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3