Morphological features of the photoplethysmographic signal: a new approach to characterize the microcirculatory response to photobiomodulation

Author:

Ovadia-Blechman Zehava,Hauptman Yermiyahu,Rabin Neta,Wiezman Gal,Hoffer Oshrit,Gertz S. David,Gavish Benjamin,Gavish Lilach

Abstract

Introduction and Objectives: Advanced analysis of the morphological features of the photoplethysmographic (PPG) waveform may provide greater understanding of mechanisms of action of photobiomodulation (PBM). Photobiomodulation is a non-ionizing, red to near-infrared irradiation shown to induce peripheral vasodilatation, promote wound healing, and reduce pain. Using laser Doppler flowmetry combined with thermal imaging we found previously in a clinical study that PBM stimulates microcirculatory blood flow and that baseline palm skin temperature determines, at least in part, why some individuals respond favorably to PBM while others do not. “Responders” (n = 12) had a skin temperature range of 33°C–37.5°C, while “non-responders” (n = 8) had “cold” or “hot” skin temperature (<33°C or >37.5°C respectively). The continuous PPG signals recorded from the index fingers of both hands in the original clinical study were subjected to advanced post-acquisitional analysis in the current study, aiming to identify morphological features that may improve the accuracy of discrimination between potential responders and non-responders to PBM.Methods: The PPG signals were detrended by subtracting the lower envelope from the raw signal. The Root Mean Square (RMS) and Entropy features were extracted as were two additional morphological features -- Smoothness and number of local extrema per PPG beat (#Extrema). These describe the signal jaggedness and were developed specifically for this study. The Wilcoxon test was used for paired comparisons. Correlations were determined by the Spearman correlation test (rs).Results: The PPG waveforms of responders to PBM had increased amplitude and decreased jaggedness (Baseline vs. 10’ post-irradiation: Entropy, 5.0 ± 1.3 vs. 3.9 ± 1.1, p = 0.012; #Extrema, 4.0 ± 1.1 vs. 3.0 ± 1.6, p = 0.009; RMS, 1.6 ± 0.9 vs. 2.3 ± 1.2, p = 0.004; Smoothness, 0.10 ± 0.05 vs. 0.19 ± 0.16, p = 0.016). In addition, unilateral irradiation resulted in a bilateral response, although the response of the contralateral, non-irradiated hand was shorter in duration and lower in magnitude. Although subjects with ‘cold,’ or ‘hot,’ baseline skin temperature appeared to have morphologically distinct PPG waveforms, representing vasoconstriction and vasodilatation, these were not affected by PBM irradiation.Conclusion: This pilot study indicates that post-acquisitional analysis of morphological features of the PPG waveform provides new measures for the exploration of microcirculation responsiveness to PBM.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference58 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3