Exercise Heat Acclimation With Dehydration Does Not Affect Vascular and Cardiac Volumes or Systemic Hemodynamics During Endurance Exercise

Author:

Travers Gavin,González-Alonso José,Riding Nathan,Nichols David,Shaw Anthony,Périard Julien D.

Abstract

Permissive dehydration during exercise heat acclimation (HA) may enhance hematological and cardiovascular adaptations and thus acute responses to prolonged exercise. However, the independent role of permissive dehydration on vascular and cardiac volumes, ventricular-arterial (VA) coupling and systemic hemodynamics has not been systematically investigated. Seven males completed two 10-day exercise HA interventions with controlled heart rate (HR) where euhydration was maintained or permissive dehydration (-2.9 ± 0.5% body mass) occurred. Two experimental trials were conducted before and after each HA intervention where euhydration was maintained (-0.5 ± 0.4%) or dehydration was induced (-3.6 ± 0.6%) via prescribed fluid intakes. Rectal (Tre) and skin temperatures, HR, blood (BV) and left ventricular (LV) volumes, and systemic hemodynamics were measured at rest and during bouts of semi-recumbent cycling (55% V̇O2peak) in 33°C at 20, 100, and 180 min. Throughout HA sweat rate (12 ± 9%) and power output (18 ± 7 W) increased (P < 0.05), whereas Tre was 38.4 ± 0.2°C during the 75 min of HR controlled exercise (P = 1.00). Neither HA intervention altered resting and euhydrated exercising Tre, BV, LV diastolic and systolic volumes, systemic hemodynamics, and VA coupling (P > 0.05). Furthermore, the thermal and cardiovascular strain during exercise with acute dehydration post-HA was not influenced by HA hydration strategy. Instead, elevations in Tre and HR and reductions in BV and cardiac output matched pre-HA levels (P > 0.05). These findings indicate that permissive dehydration during exercise HA with controlled HR and maintained thermal stimulus does not affect hematological or cardiovascular responses during acute endurance exercise under moderate heat stress with maintained euhydration or moderate dehydration.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3