The mechanosensory world in aquatic snakes: corporal scale sensilla in three species of Neotropical freshwater dipsadine

Author:

Velasquez-Cañon Valeria,Bravo-Vega Carlos,Galeano Sandra P.,Molina Jorge,Salazar-Guzmán Alejandra María,García-Cobos Daniela

Abstract

Snakes have diverse and unique sensory systems that make them extremely efficient at moving through the environment while detecting prey and predators and performing courtship behaviors. In recent years, the number of studies on the mechanoreception of aquatic snakes has increased, principally focusing on the ecological and sexual roles of cephalic mechanoreceptors or sensilla. However, few studies have focused on the presence and role of corporal mechanoreceptors sensilla in freshwater snakes. This study describes the morphology of dome-shaped corporal scale sensilla for the first time in three species of aquatic Neotropical snakes (Helicops angulatus, Helicops danieli, and Helicops pastazae), using histological sections and Scanning Electron Microscopy (SEM). Histological sections revealed that the corporal sensilla resemble the previously described cephalic sensilla with a thinner beta keratin layer above the sensillum, and a group of central cells. Further, SEM images show dome-shaped protuberant organs with concentric rings. To infer possible ecological and sexual roles in corporal sensilla, we employed mixed ANOVA permutation tests to assess for differences in the number and area of sensilla between the dorsal and lateral position of the scales, and the anterior and posterior corporal region, as well as among species and sexes. Our results show that individuals across all species consistently exhibited a higher number of mechanoreceptors sensilla in the anterior and lateral region when compared to the posterior or midbody dorsal region. We qualitatively identified that scale sensilla are usually restricted to the keeled portion of the scale in the dorsal region, but are spread out throughout the scale in the lateral region. We also found differences in the average sensillum area between species, with H. angulatus exhibiting larger sensilla than H. danieli. Our results showed no evidence of sexual dimorphism in the number or area of corporal sensilla. These findings are the first to report corporal dome shaped mechanoreceptors in freshwater snakes and contribute to the understanding of mechanosensory systems in these organisms by elucidating the morphology, quantity, distribution and possible function of these corporal scale sensilla.

Publisher

Frontiers Media SA

Reference58 articles.

1. Anurophagy by the Brown-banded Watersnake, Helicops angulatus (Serpentes: Colubridae): a review with new records;Acosta-Ortiz;Reptiles Amphibians.,2023

2. Forward attack modes of aquatic feeding garter snakes;Alfaro;Funct. Ecology.,2002

3. Sweeping and striking: a kinematic study of the trunk during prey capture in three thamnophiine snakes;Alfaro;J. Exp. Biol.,2003

4. Feeding behavior of Helicops pastazae Shreve 1934 (Serpentes, Colubridae, Dipsadinae) in the Ecuadorian Amazon;Almendáriz;Herpetology Notes,2017

5. The adaptive significance of sexually dimorphic scale rugosity in sea snakes;Avolio;Am. Naturalist.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3