Design parameters affecting mechanical failure and electrochemical degradation of ultrathin Li-ion pouch cells under repeated flexing

Author:

Kim Kyungbae,Chan Candace K.

Abstract

Understanding mechanical failure modes of Li-ion battery electrodes of varying sizes and capacities is crucially important for the development of mechanically robust and high energy density flexible lithium-ion batteries (FLIBs). Three types of pouch cells (nominal capacities of 15, 25, and 50 mAh) were examined to understand how various design features used in the cells affected their mechanical failure modes and electrochemical performance after repeated introduction of compression and tension during bending. Postmortem microstructure analysis was carried out to identify the impacts of repeated flexing; several failure modes such as crack propagation, particle detachment, composite delamination, separator damage, electrode tears, and micro-short circuits were observed. We find that the observed mechanical failure modes are mainly dependent on the: 1) size and shape of the electrode composite materials, 2) configuration of the components within the cell (e.g., method of electrode folding, location of welded tabs), and 3) orientation of the long axis of the cell with respect to the bending axis. It was observed that the discharge capacity for all cell types studied herein was only slightly decreased (∼6–7% at 2C-rate) even after 3,000 repeated bends at a 25 mm radius of curvature provided if the bending axis is aligned to the long dimension of the cell. The results of this study provide valuable information on possible failure modes in Li-ion battery electrodes subjected to repeated flexing and how they can be mitigated to improve the dependability of practical pouch cells for FLIBs.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3