A quantitative description method for the mechanical behavior of soil-rock mixture as affected by water content

Author:

Du Yuxiang,Fu Xiaodong,Sheng Qian,Zhang Zhenping,Du Wenjie,Ding Haifeng,Liu Tingting

Abstract

The mechanical properties of soil rock mixture (S-RM) are complex, especially the strength deterioration after encountering water, which readily leads to engineering instability. A series of large triaxial tests of S-RM with different water contents under various confining pressures were performed, the mechanical properties of S-RM were explored from a macroscopic perspective. The constitutive model of S-RM – an extended Duncan-Chang (DC) model considering water content – was developed. The results show that: (a) the stress-strain curves of S-RM are strain hardening type, the peak strength decreases non-linearly with the increase of water content, the higher the water content of sample, the more significant the bulging phenomenon and the more numerous and extensive the surface cracks; (b) the cohesion c and internal friction angle φ of S-RM both decrease approximately linearly with the increase of water content, and the secant modulus decreases significantly with the increase of water content, the reason of which can be attributed to the porosity and compression characteristics of S-RM; (c) the extended DC model can be used to describe the mechanical behavior of S-RM affected by water under triaxial test conditions. The material constant K, failure ratio Rf, c, and φ are all related to water content ω, while material constant n is independent, only ω, n, maximum principal stress σ1, and minimum principal stress σ3 are needed to determine the tangent modulus of the DC model of S-RM. The results can provide an experimental basis and mechanical understanding applicable to engineering practice in an S-RM formation.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3