Numerical simulation of the Oncomelania snails transport attached to floating objects under different wind conditions

Author:

Zhang Lin,Zhou Jian-yin,Jin Zhong-wu,Chai Zhao-hui,Yang Qi-hong

Abstract

The long-distance migration of Oncomelania snails mainly occurs by attaching to floating objects during floods. However, the processes, characteristics and effects of migration are not fully understood. Here, a motion equation for floating objects with attached Oncomelania snails was constructed using the Lagrangian method. The equation can be numerically solved to simulate the movement of floating objects after parameter calibration. Then, the calibrated parameters were used to simulate the migration of Oncomelania snails in the lower Jingjiang River, where they had spread over a large area. The effects of flood conditions on the migration and spread of Oncomelania snails have been studied to a certain extent, but the impact of wind conditions on snail migration has rarely been reported. Therefore, based on the distribution of Oncomelania snails in China, the difficulties and key areas for the control of schistosomiasis and Oncomelania snails, and the morphological characteristics of the river reach, the Lower Jingjiang River section was selected as a practical application case. A theoretical model of the migration and spread of Oncomelania snails was established, and the characteristics of the Oncomelania snail migration were simulated and analyzed based on flood and distribution patterns under different wind conditions. The results indicate that wind conditions have little influence on the longitudinal spreading of Oncomelania snails but have a relatively large influence on the lateral spreading of snails. Compared with calm wind conditions, both northeasterly and southerly wind conditions can lead to longer longitudinal migration distances of snails, thereby increasing the risk of snail spreading and schistosomiasis transmission.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3