A Novel Body Plan Alters Diversification of Body Shape and Genitalia in Live-Bearing Fish

Author:

Langerhans R. Brian,Rosa-Molinar Eduardo

Abstract

Major evolutionary innovations can greatly influence subsequent evolution. While many major transitions occurred in the deep past, male live-bearing fishes (family Poeciliidae) more recently evolved a novel body plan. This group possesses a three-region axial skeleton, with one region—the ano-urogenital region—representing a unique body region accommodating male genitalic structures (gonopodial complex). Here we evaluate several hypotheses for the evolution of diversity in this region and examine its role in the evolution of male body shape. Examining Gambusia fishes, we tested a priori predictions for (1) joint influence of gonopodial-complex traits on mating performance, (2) correlated evolution of gonopodial-complex traits at macro- and microevolutionary scales, and (3) predator-driven evolution of gonopodial-complex traits in a post-Pleistocene radiation of Bahamas mosquitofish. We found the length of the sperm-transfer organ (gonopodium) and its placement along the body (gonopodial anterior transposition) jointly influenced mating success, with correlational selection favoring particular trait combinations. Despite these two traits functionally interacting during mating, we found no evidence for their correlated evolution at macro- or microevolutionary scales. In contrast, we did uncover correlated evolution of modified vertebral hemal spines (part of the novel body region) and gonopodial anterior transposition at both evolutionary scales, matching predictions of developmental connections between these components. Developmental linkages in the ano-urogenital region apparently play key roles in evolutionary trajectories, but multiple selective agents likely act on gonopodium length and cause less predictable evolution. Within Bahamas mosquitofish, evolution of hemal-spine morphology, and gonopodial anterior transposition across predation regimes was quite predictable, with populations evolving under high predation risk showing more modified hemal spines with greater modifications and a more anteriorly positioned gonopodium. These changes in the ano-urogenital vertebral region have facilitated adaptive divergence in swimming abilities and body shape between predation regimes. Gonopodium surface area, but not length, evolved as predicted in Bahamas mosquitofish, consistent with a previously suggested tradeoff between natural and sexual selection on gonopodium size. These results provide insight into how restructured body plans offer novel evolutionary solutions. Here, a novel body region—originally evolved to aid sperm transfer—was apparently co-opted to alter whole-organism performance, facilitating phenotypic diversification.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference89 articles.

1. A latent capacity for evolutionary innovation through exaptation in metabolic systems;Barve;Nature,2013

2. BatesD. MaechlerM. BolkerB. lme4: Linear Mixed-Effects Models Using S4 Classes2011

3. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;J. R. Stat. Soc. Ser. B Stat. Methodol.,1995

4. Contingency and determinism in evolution: replaying life's tape;Blount;Science,2018

5. Fitness consequences of artificial selection on relative male genital size;Booksmythe;Nat. Commun.,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3