Strong Behavioral Effects of Omnivorous Fish on Amphibian Oviposition Habitat Selection: Potential Consequences for Ecosystem Shifts

Author:

Kloskowski Janusz,Nieoczym Marek

Abstract

Perceived predation risk to offspring may have similar ultimate community-level impacts to those of consumptive trophic interactions. The present study investigated the behavioral effects of common carpCyprinus carpio–an omnivorous fish capable of triggering an ecosystem shift to an algae-dominated state–on anurans, using a natural experiment conducted in a system of fish-stocked ponds. We compared oviposition patterns and larval densities of anurans and abundance of zooplankton and phytoplankton in ponds where fish were virtually absent and ponds where common carp was dominant. All studied anuran species bred in fish-poor ponds, while in ponds with high fish densities most of them oviposited infrequently or virtually did not breed. Oviposition habitat selection coupled with fish trophic pressure resulted in diametrically different tadpole densities between fish-poor and fish-dominated ponds. The alimentary tract contents of tadpoles of three locally common anurans,Pelobates fuscus,Hyla orientalis, andRana temporaria, contained large numbers of unicellular algae, but also significant numbers of zooplanktonic grazers. According to stable nitrogen isotope analyses, tadpoles occupied a trophic level similar to a primary consumer, snailLymnaea stagnalis, indicating that they fed mainly on algae. While total biomass of crustacean zooplankton did not differ between pond types, chlorophyllaconcentrations were low in fish-poor ponds compared to fish-dominated ponds and negatively related to total tadpole biomass. Our findings indicate that scarcity of anuran larvae, resulting mainly from the behavioral responses of breeding anurans to fish predation risk, may facilitate algal production, although ecosystem shifts in the presence of fish occur along more pathways than a top-down cascade.

Funder

Ministerstwo Edukacji i Nauki

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3