Sonotope patterns within a mountain beech forest of Northern Italy: a methodological and empirical approach

Author:

Farina Almo,Mullet Timothy C.

Abstract

According to the Sonotope Hypothesis, the heterogenous nature of the acoustically sensed, but not yet interpreted, environmental sounds (i.e., sonoscape) is created by the spatial and temporal conformation of sonic patches (sonotopes) as recently been described in a Mediterranean rural landscape. We investigated the Sonotope Hypothesis in a mountain beech forest of the Northern Apennines, Italy that is notoriously poor in soniferous species. Our aim was to test whether sonotopes were temporally distinct over seasonal and astronomical timeframes and spatially configured in relation to vegetation variables. We used the Acoustic Complexity Index (ACItf) to analyze the heterogeneity of sonic information gathered from an array of 11 sound recorders deployed within a lattice of eleven 4-ha hexagonal sample sites distributed throughout a 48-ha managed beech forest. We visualized and described the temporal patterns of ACItf between seasons (May–June and July–August 2021), across six astronomical periods (Night I, Morning Twilight, Morning, Afternoon, Evening Twilight, and Night II), and according to two aggregated frequency classes (≤2000 and >2000 Hz). We introduced Spectral Sonic Signature (SSS) calculated from the sequence of ACItf values along frequency bins as a descriptor of the dynamic production of sounds across spatial and temporal scales. We calculated Mean Spectral Dissimilarity to compare SSS values across temporal periods and between sample sites. We identified sonotopes by grouping similar SSS for each sample site generated from cluster analyses and visualized their spatial arrangements. Frequencies ≤2000 Hz (mainly geophonies from wind and rain) were more prevalent than frequencies >2000 Hz (mainly biophonies from songbirds). Despite there being no strong relationship to vegetation variables and minimal biophony and anthropophony, distinct sonotopes still emerged for every astronomical and seasonal period. This suggests that the sonoscape expresses distinct spatial and temporal sonotope configurations associated with the temporal and spatial patterns of geophysical events that generate geophonies with minimal animal or anthropogenic occurrences. A new strategy based on the reintroduction of indigenous trees and shrubs in managed clearings should be considered for enhancing local biodiversity conservation along with ecoacoustic monitoring based on the Sonotope Hypothesis.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3