Author:
Wang Hailong,Zheng Jinghua
Abstract
The ability of the atmosphere to remove water from land surface is measured by potential evapotranspiration (ETp), which is often inferred by the reference evapotranspiration (ETo). Therefore, ETp is often considered only influenced by the above-ground meteorological conditions. Based on its concept, ETp should also link with surface conditions that influence the surface resistance. Such linkages differ in dry and wet regions with different surface covers. Here, we calculated ETo and especially analyzed the effects of surface conditions including vegetation cover indicated by NDVI (Normalized Difference Vegetation Index) and root-zone SWC (soil water content) in a humid subtropical province of China. Results show that ETp, NDVI, wind speed, temperatures have increased significantly during 1982–2015 and relative humidity (RH) has decreased significantly. Linear trends of these variables varied across seasons, but similarities were found between spring and winter and between summer and autumn. Summer saw the greatest changes in ETp per unit of environmental variable change. Solar radiation, RH, and precipitation exerted overall stronger influence on ETp (R2 > 0.50) than other factors. NDVI and SWC were found positively and negatively affecting ETp at all time scales. Partial correlation analysis showed significant influence of NDVI and SWC at the monthly scale; moreover, SWC influenced ETp more significantly in summer than other seasons (p < 0.05). Since actual evapotranspiration is often deducted from ETp by multiplicative stress functions in many hydrologic models, understanding the relationships between ETp and environmental changes can help improve the formulation and estimation of actual evapotranspiration.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Guangdong Science and Technology Department
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献