An adaptive control framework based multi-modal information-driven dance composition model for musical robots

Author:

Xu Fumei,Xia Yu,Wu Xiaorun

Abstract

Currently, most robot dances are pre-compiled, the requirement of manual adjustment of relevant parameters and meta-action to change the dancing to another type of music would greatly reduce its function. To overcome the gap, this study proposed a dance composition model for mobile robots based on multimodal information. The model consists of three parts. (1) Extraction of multimodal information. The temporal structure feature method of structure analysis framework is used to divide audio music files into music structures; then, a hierarchical emotion detection framework is used to extract information (rhythm, emotion, tension, etc.) for each segmented music structure; calculating the safety of the current car and surrounding objects in motion; finally, extracting the stage color of the robot's location, corresponding to the relevant atmosphere emotions. (2) Initialize the dance library. Dance composition is divided into four categories based on the classification of music emotions; in addition, each type of dance composition is divided into skilled composition and general dance composition. (3) The total path length can be obtained by combining multimodal information based on different emotions, initial speeds, and music structure periods; then, target point planning can be carried out based on the specific dance composition selected. An adaptive control framework based on the Cerebellar Model Articulation Controller (CMAC) and compensation controllers is used to track the target point trajectory, and finally, the selected dance composition is formed. Mobile robot dance composition provides a new method and concept for humanoid robot dance composition.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference36 articles.

1. “Aibo jukeBox–A robot dance interactive experience,”;Angulo;Advances in Computational Intelligence: 11th International Work-Conference on Artificial Neural Networks, IWANN 2011, Torremolinos-Málaga, Spain, June 8-10, 2011, Proceedings, Part II 11,2011

2. Cheek to chip: dancing Robotsand AI's future;Aucouturier;IEEE Intell. Syst.,2008

3. “Developing a robot hip-hop dance game to engage rural minorities in computer science,”;Bryant;Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction,2017

4. Adaptive neural network control of underactuated surface vessels with guaranteed transient performance: theory and experimental results;Chen;IEEE Transact. Ind. Electron,2019

5. Online detection of compensatory strategies in human movement with supervised classification: a pilot study;Das;Front. Neurorobot,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3