Author:
Afonin Andrei,Chertkov Michael
Abstract
We consider a power transmission system monitored using phasor measurement units (PMUs) placed at significant, but not all, nodes of the system. Assuming that a sufficient number of distinct single-line faults, specifically the pre-fault state and the (not cleared) post-fault state, are recorded by the PMUs and are available for training, we first design a comprehensive sequence of neural networks (NNs) locating the faulty line. Performance of different NNs in the sequence, including linear regression, feed-forward NNs, AlexNet, graph convolutional NNs, neural linear ordinary differential equations (ODEs) and neural graph-based ODEs, ordered according to the type and amount of the power flow physics involved, are compared for different levels of observability. Second, we build a sequence of advanced power system dynamics–informed and neural ODE–based machine learning schemes that are trained, given the pre-fault state, to predict the post-fault state and also, in parallel, to estimate system parameters. Finally, third and continuing to work with the first (fault localization) setting, we design an (NN-based) algorithm which discovers optimal PMU placement.
Reference28 articles.
1. Modern State Estimation Methods in Power Systems;Baalbergen,2009
2. Learning Networks of Stochastic Differential Equations;Bento,2010
3. Neural Ordinary Differential Equations;Chen,2018
4. A Toolbox for Power System Dynamics and Control Engineering Education and Research;Chow;IEEE Trans. Power Syst.,1992
5. Deep Residual Learning for Image Recognition;He,2015
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献