Learning multisensory cue integration: A computational model of crossmodal synaptic plasticity enables reliability-based cue weighting by capturing stimulus statistics

Author:

Shaikh Danish

Abstract

The brain forms unified, coherent, and accurate percepts of events occurring in the environment by integrating information from multiple senses through the process of multisensory integration. The neural mechanisms underlying this process, its development and its maturation in a multisensory environment are yet to be properly understood. Numerous psychophysical studies suggest that the multisensory cue integration process follows the principle of Bayesian estimation, where the contributions of individual sensory modalities are proportional to the relative reliabilities of the different sensory stimuli. In this article I hypothesize that experience dependent crossmodal synaptic plasticity may be a plausible mechanism underlying development of multisensory cue integration. I test this hypothesis via a computational model that implements Bayesian multisensory cue integration using reliability-based cue weighting. The model uses crossmodal synaptic plasticity to capture stimulus statistics within synaptic weights that are adapted to reflect the relative reliabilities of the participating stimuli. The model is embodied in a simulated robotic agent that learns to localize an audio-visual target by integrating spatial location cues extracted from of auditory and visual sensory modalities. Results of multiple randomized target localization trials in simulation indicate that the model is able to learn modality-specific synaptic weights proportional to the relative reliabilities of the auditory and visual stimuli. The proposed model with learned synaptic weights is also compared with a maximum-likelihood estimation model for cue integration via regression analysis. Results indicate that the proposed model reflects maximum-likelihood estimation.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Sensory Systems,Neuroscience (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3