Mapping Mechanistic Pathways of Acute Oral Systemic Toxicity Using Chemical Structure and Bioactivity Measurements

Author:

Edwards Stephen W.,Nelms Mark,Hench Virginia K.,Ponder Jessica,Sullivan Kristie

Abstract

Regulatory agencies around the world have committed to reducing or eliminating animal testing for establishing chemical safety. Adverse outcome pathways can facilitate replacement by providing a mechanistic framework for identifying the appropriate non-animal methods and connecting them to apical adverse outcomes. This study separated 11,992 chemicals with curated rat oral acute toxicity information into clusters of structurally similar compounds. Each cluster was then assigned one or more ToxCast/Tox21 assays by looking for the minimum number of assays required to record at least one positive hit call below cytotoxicity for all acutely toxic chemicals in the cluster. When structural information is used to select assays for testing, none of the chemicals required more than four assays and 98% required two assays or less. Both the structure-based clusters and activity from the associated assays were significantly associated with the GHS toxicity classification of the chemicals, which suggests that a combination of bioactivity and structural information could be as reproducible as traditional in vivo studies. Predictivity is improved when the in vitro assay directly corresponds to the mechanism of toxicity, but many indirect assays showed promise as well. Given the lower cost of in vitro testing, a small assay battery including both general cytotoxicity assays and two or more orthogonal assays targeting the toxicological mechanism could be used to improve performance further. This approach illustrates the promise of combining existing in silico approaches, such as the Collaborative Acute Toxicity Modeling Suite (CATMoS), with structure-based bioactivity information as part of an efficient tiered testing strategy that can reduce or eliminate animal testing for acute oral toxicity.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3