Synchronization of two electrochemical oscillators in a closed bipolar cell

Author:

Tetteh John A.,Kiss István Z.

Abstract

We investigate the dynamical behavior of the oscillatory electrodissolution of nickel and hydrogen reduction reaction in a closed electrochemical bipolar cell with two nickel wires. In the bipolar setup, two-half U cells are separated by an epoxy plate with the two embedded nickel electrodes; the oxidation and reduction reactions take place at the two ends of the same wire. The electrode potential oscillations were found to be strongly synchronized with 1 mm diameter electrodes in an in-phase configuration. Because experiments in similar configurations with traditional (three-electrode) cell showed no synchronization of the oscillatory anodic nickel electrodissolution, the introduction of the cathodic side of the bipolar electrodes induced the synchronization. The results were interpreted with a model that considered the kinetically coupled cathode-anode dynamics as well as interactions on the cathode and the anode side through migration current mediated potential drops in the electrolyte. The electrical coupling strength was calculated from solution resistance and charge transfer resistance measurements. The theory correctly interpreted that the bipolar cell with large (1 mm diameter) electrodes exhibits strong coupling with synchronization, and the bipolar cell with small (0.25 mm diameter) electrodes and the traditional configuration exhibit weak coupling and thus desynchronization. The experiments demonstrate the use of bipolar electrochemical cells for the investigation of collective behavior of electrochemical processes and the proposed approach holds promise for the design of bipolar multi-electrode arrays with engineered coupling to promote sensing and information processing using microchips.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3