Phase-field modeling of geologic fractures

Author:

Choo Jinhyun

Abstract

Geologic fractures such as joints, faults, and slip surfaces govern the stability and performance of many subsurface systems in the built environment. As such, a variety of approaches have been developed for computational modeling of geologic fractures. Yet none of them lends itself to a straightforward utilization with the classical finite element method widely used in practice. Over the past decade, phase-field modeling has become a popular approach for simulating fracture, because it can be implemented simply with the standard finite element method without any surface-tracking algorithms. However, the standard phase-field formulations do not incorporate several critical features of geologic fractures, including frictional contact, pressure-dependence, quasi-brittleness, mode-mixity, and their combined impacts on cracking. This article provides a brief report of a novel phase-field model that incorporates these features of geologic fractures in a well-verified and validated manner. Remarkably, the phase-field model allows one to simulate the combination of cohesive tensile fracture and frictional shear fracture without any algorithms for surface tracking and contact constraints. It is also demonstrated how phase-field modeling enables us to gain insights into geologic fractures that are challenging to investigate experimentally.

Publisher

Frontiers Media SA

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3