Visual Analytics for Operation-Level Construction Monitoring and Documentation: State-of-the-Art Technologies, Research Challenges, and Future Directions

Author:

Kim Jinwoo

Abstract

Operation-level vision-based monitoring and documentation has drawn significant attention from construction practitioners and researchers. To automate the operation-level monitoring of construction and built environments, there have been much effort to develop computer vision technologies. Despite their encouraging findings, it remains a major challenge to exploit technologies in real construction projects, implying that there are knowledge gaps in practice and theory. To fill such knowledge gaps, this study thoroughly reviews 119 papers on operation-level vision-based construction monitoring, published in mainstream construction informatics journals. Existing research papers can be categorized into three sequential technologies: (1) camera placement for operation-level construction monitoring, (2) single-camera-based construction monitoring and documentation, and (3) multi-camera-based onsite information integration and construction monitoring. For each technology, state-of-the-art algorithms, open challenges, and future directions are discussed.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Reference159 articles.

1. A novel method for calculating camera coverage in buildings using BIM.;Albahri;J. Inform. Technol. Constr.

2. Simulation-based optimization of surveillance camera types, number, and placement in buildings using BIM.;Albahri;J. Comp. Civil Eng.

3. Tracking multiple construction workers through deep learning and the gradient based method with re-matching based on multi-object tracking accuracy.;Angah;Automat. Constr.,2020

4. A deep-learning-based computer vision solution for construction.;Arabi;Comp. Aided Civil Infrastruct. Eng.,2020

5. Sensor-based safety management.;Asadzadeh;Automat. Constr.,2020

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3