Every-other-day fasting inhibits pyroptosis while regulating bile acid metabolism and activating TGR5 signaling in spinal cord injury

Author:

Song Honghu,Pang Rizhao,Chen Zhixuan,Wang Linjie,Hu Xiaomin,Feng Jingzhi,Wang Wenchun,Liu Jiancheng,Zhang Anren

Abstract

Every-other-day fasting (EODF) is a form of caloric restriction that alternates between periods of normal eating and fasting, aimed at preventing and treating diseases. This approach has gained widespread usage in basic research on neurological conditions, including spinal cord injury, and has demonstrated significant neuroprotective effects. Additionally, EODF is noted for its safety and feasibility, suggesting broad potential for application. This study aims to evaluate the therapeutic effects of EODF on spinal cord injury and to investigate and enhance its underlying mechanisms. Initially, the SCI rat model was utilized to evaluate the effects of EODF on pathological injury and motor function. Subsequently, considering the enhancement of metabolism through EODF, bile acid metabolism in SCI rats was analyzed using liquid chromatography-mass spectrometry (LC–MS), and the expression of the bile acid receptor TGR5 was further assessed. Ultimately, it was confirmed that EODF influences the activation of microglia and NLRP3 inflammasomes associated with the TGR5 signaling, along with the expression of downstream pyroptosis pathway related proteins and inflammatory cytokines, as evidenced by the activation of the NLRP3/Caspase-1/GSDMD pyroptosis pathway in SCI rats. The results demonstrated that EODF significantly enhanced the recovery of motor function and reduced pathological damage in SCI rats while controlling weight gain. Notably, EODF promoted the secretion of bile acid metabolites, activated TGR5, and inhibited the NLRP3/Caspase-1/GSDMD pyroptosis pathway and inflammation in these rats. In summary, EODF could mitigate secondary injury after SCI and foster functional recovery by improving metabolism, activating the TGR5 signaling and inhibiting the NLRP3 pyroptosis pathway.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3