Histone Deacetylase 2 Knockdown Ameliorates Morphological Abnormalities of Dendritic Branches and Spines to Improve Synaptic Plasticity in an APP/PS1 Transgenic Mouse Model

Author:

Nakatsuka Daiki,Izumi Takaya,Tsukamoto Tasuku,Oyama Miki,Nishitomi Kohei,Deguchi Yuichi,Niidome Kazuki,Yamakawa Hidekuni,Ito Hisanori,Ogawa Koichi

Abstract

Disease-modifying therapies, such as neuroprotective and neurorestorative interventions, are strongly desired for Alzheimer’s disease (AD) treatment. Several studies have suggested that histone deacetylase 2 (HDAC2) inhibition can exhibit disease-modifying effects in AD patients. However, whether HDAC2 inhibition shows neuroprotective and neurorestorative effects under neuropathic conditions, such as amyloid β (Aβ)-elevated states, remains poorly understood. Here, we performed HDAC2-specific knockdown in CA1 pyramidal cells and showed that HDAC2 knockdown increased the length of dendrites and the number of mushroom-like spines of CA1 basal dendrites in APP/PS1 transgenic mouse model. Furthermore, HDAC2 knockdown also ameliorated the deficits in hippocampal CA1 long-term potentiation and memory impairment in contextual fear conditioning tests. Taken together, our results support the notion that specific inhibition of HDAC2 has the potential to slow the disease progression of AD through ameliorating Aβ-induced neuronal impairments.

Funder

Shionogi

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3