The Val66 and Met66 Alleles-Specific Expression of BDNF in Human Muscle and Their Metabolic Responsivity

Author:

de Assis Gilmara Gomes,Hoffman Jay R.,Bojakowski Jacek,Murawska-Ciałowicz Eugenia,Cięszczyk Paweł,Gasanov Eugene V.

Abstract

Brain-derived neurotrophic factor (BDNF) plays an essential role in nervous system formation and functioning, including metabolism. Present only in humans, the “Val66Met” polymorphism of the BDNF gene (BDNF) is suggested to have a negative influence on the etiology of neurological diseases. However, this polymorphism has only been addressed, at the molecular level, in nonhuman models. Knowledge about Val66- and Met66-variant differences, to date, has been achieved at the protein level using either cell culture or animal models. Thus, the purpose of our study was to analyze the impact of the Val66Met polymorphism on BDNF expression in healthy humans and compare the allele-specific responses to metabolic stress. Muscle biopsies from 13 male recreational athletes (34 ± 9 years, 1.80 ± 0.08 m, 76.4 ± 10.5 kg) were obtained before and immediately following a VO2max test. Allele-specific BDNF mRNA concentrations were quantified by droplet digital PCR (ddPCR) in heterozygous and homozygous subjects. The results indicated that BDNF expression levels were influenced by the genotype according to the presence of the polymorphism. BDNF expression from the Met66-coding alleles, in heterozygotes, was 1.3-fold lower than that from the Val66-coding alleles. Total BDNF mRNA levels in these heterozygotes remained below the whole sample’s mean. A partial dominance was detected for the Val66-coding variant on the Met66-coding’s. BDNF expression levels decreased by an average of 1.8-fold following the VO2max test, independent of the individual’s genotype. The results of this study indicate that metabolic stress downregulates BDNF expression but not plasma BDNF concentrations. No correlation between expression level and plasma BDNF concentrations was found.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3