Spinal GABA transporter 1 contributes to evoked-pain related behavior but not resting pain after incision injury

Author:

Pradier Bruno,Segelcke Daniel,Reichl Sylvia,Zahn P. K.,Pogatzki-Zahn E. M.

Abstract

The inhibitory function of GABA at the spinal level and its central modulation in the brain are essential for pain perception. However, in post-surgical pain, the exact mechanism and modes of action of GABAergic transmission have been poorly studied. This work aimed to investigate GABA synthesis and uptake in the incisional pain model in a time-dependent manner. Here, we combined assays for mechanical and heat stimuli-induced withdrawal reflexes with video-based assessments and assays for non-evoked (NEP, guarding of affected hind paw) and movement-evoked (MEP, gait pattern) pain-related behaviors in a plantar incision model in male rats to phenotype the effects of the inhibition of the GABA transporter (GAT-1), using a specific antagonist (NO711). Further, we determined the expression profile of spinal dorsal horn GAT-1 and glutamate decarboxylase 65/67 (GAD65/67) by protein expression analyses at four time points post-incision. Four hours after incision, we detected an evoked pain phenotype (mechanical, heat and movement), which transiently ameliorated dose-dependently following spinal inhibition of GAT-1. However, the NEP-phenotype was not affected. Four hours after incision, GAT-1 expression was significantly increased, whereas GAD67 expression was significantly reduced. Our data suggest that GAT-1 plays a role in balancing spinal GABAergic signaling in the spinal dorsal horn shortly after incision, resulting in the evoked pain phenotype. Increased GAT-1 expression leads to increased GABA uptake from the synaptic cleft and reduces tonic GABAergic inhibition at the post-synapse. Inhibition of GAT-1 transiently reversed this imbalance and ameliorated the evoked pain phenotype.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3