Enhancing crop growth in rooftop farms by repurposing CO2 from human respiration inside buildings

Author:

Buckley Sarabeth,Sparks Rebecca,Cowdery Elizabeth,Stirling Finn,Marsching Jane,Phillips Nathan

Abstract

Integrating cities with the surrounding environment by incorporating green spaces in creative ways would help counter climate change. We propose a rooftop farm system called BIG GRO where air enriched with carbon dioxide (CO2) produced through respiration from indoor spaces is applied through existing ventilation systems to produce a fertilization effect and increased plant growth. CO2 measurements were taken inside 20 classrooms and at two exhaust vents on a rooftop at Boston University in Boston, MA. Exhausted air was directed toward spinach and corn and plant biomass and leaf number were analyzed. High concentrations of CO2 persisted inside classrooms and at rooftop exhaust vents in correlation with expected human occupancy. CO2 levels averaged 1,070 and 830 parts per million (ppm), reaching a maximum of 4,470 and 1,300 ppm CO2 indoors and at exhaust vents, respectively. The biomass of spinach grown next to exhaust air increased fourfold compared to plants grown next to a control fan applying atmospheric air. High wind speed from fans decreased growth by approximately twofold. The biomass of corn, a C4 plant, experienced a two to threefold increase, indicating that alternative environmental factors, such as temperature, likely contribute to growth enhancement. Enhancing growth in rooftop farms using indoor air would help increase yield and help crops survive harsh conditions, which would make their installation in cities more feasible.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Urban farming with rooftop greenhouses: A systematic literature review;Renewable and Sustainable Energy Reviews;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3