Characterization and valorization of biogas digestate and derived organic fertilizer products from separation processes

Author:

Romio Cristiane,Ward Alastair James,Møller Henrik Bjarne

Abstract

IntroductionAnaerobic digestion of manure, together with other biowastes, produces biogas that can substitute fossil energy and thereby reduce CO2 emissions and post- digestion greenhouse gas emissions. The final digestate of the process is an organic fertilizer rich in plant nutrients and recalcitrant organic constituents. The digestate characteristics and quality depend on several parameters, such as input feedstocks and operational conditions of the biogas plants. In Denmark, the rapid expansion of the biogas sector in recent years has resulted in a great variety of feedstocks used in the plants. The first generation of biogas plants mainly treated manure, industrial wastes, and energy crops with short retention times, while the new generation of biogas plants are co-digesting manure with higher amounts of lignocellulosic feedstocks and operating with longer retention times. This study evaluated whether this shift in feedstock composition could impact the fertilizer quality and post-digestion greenhouse gases and ammonia emissions during storage and application of digestate.MethodsDigestate samples from 2015 to 2023 were collected and analyzed for composition and residual methane yields. The efficiencies of solid–liquid separation applied to several digestate samples from the new generation of biogas plants were investigated and the nutrients contents of the liquid and solid fractions of digestate were evaluated.Results and discussionThe most evident change caused by the feedstock transition was an average increase of 52% in the total solids content of digestate, which can negatively impact ammonia emissions during digestate application. In contrast, similar average residual methane yields on a fresh matter basis of approximately 5 L/kg indicated comparable risks of methane emissions during storage. The liquid fraction of industrially separated digestate presented, on average, nutrient concentrations similar to those of unseparated digestate, while the solid fraction presented similar K, lower total ammoniacal nitrogen, and higher organic N and P contents than unseparated digestate on a fresh matter basis. The average residual methane yield of the industrially separated solid fraction of digestate was 101 L/kg volatile solids, while the average calorific value was 21 MJ/kg volatile solids, indicating its potential for additional energy generation.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3