Integrated systems improve the sustainability of soybean cultivation in the tropical region

Author:

e Silva João Antônio Gonçalves,Costa Kátia Aparecida de Pinho,da Silva Luciana Maria,Severiano Eduardo da Costa,Silva Fabiano Guimarães,Habermann Eduardo,Martinez Carlos Alberto,Vilela Lourival,da Silva Alessandro Guerra,Costa Adriano Carvalho,Costa João Victor Campos Pinho,de Oliveira Katryne Jordana

Abstract

Inter-cropping between annual crops with tropical forages through integration crop-livestock systems (ICL) is considered a sustainable option to increase crop diversity and soybean productivity. In this study, we evaluated (1) the biomass production, desiccation efficiency, nutrient accumulation, and biomass decomposition of soil crop residues produced by Panicum maximum plants intercropped with maize in two different sowing methods during the second harvest and (2) investigated how soil crop residues impact the productivity of soybean. The experiment was conducted in a complete block design with three replicates. We compared conventional soybean cultivation with soybean cultivated over soil crop residues produced by a previous integration between maize and two Panicum maximum cultivars: Tamani and Zuri guinea grass, within and between rows of maize plants. Our results showed that Tamani guinea grass showed the highest desiccation efficiency. Zuri and Tamani guinea grass cultivated within and between maize plants resulted in higher biomass production and nutrient cycling potential, resulting in an increase of 28.4% in soybean productivity, compared to soybean grown without soil crop residues. We concluded that ICL system is an efficient method to increase the sustainability of soybean cultivation.

Funder

National Council for Scientific and Technological Development

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3