Locally-selected cacao clones for improved yield: a case study in different production systems in a long-term trial

Author:

Armengot Laura,Picucci Marco,Milz Joachim,Hansen Jon Kehlet,Schneider Monika

Abstract

Ageing plantations, poor genetic material, soil degradation, pests and diseases are, among other factors, limiting cacao production. To meet the increasing demand for cacao in the absence of productivity gains, forests are cleared and the use of external inputs is generalised, with severe negative impacts on biodiversity and GHG emissions. The use of improved plant genetic material should support a sustainable increase of production. In this study, we evaluate and compare the yield performance of four locally-selected clones with those of four widely-used international clones in South America and four full-sib families (crosses of the same international clones). The research was conducted in a long-term trial in Bolivia with different production systems, including monocultures and agroforestry systems under organic and conventional farming and a successional agroforestry system without external inputs. Their cacao yields and the factors determining productivity (pod index, flowering intensity, pod load, pod losses, aboveground biomass, harvesting period) were assessed during 5 years. The cacao trees grown in the two monocultures had higher yields than those in the agroforestry systems. This was the result of higher aboveground biomass, flowering intensity and pod load, and similar pod losses due to cherelle wilt and fungal diseases in the former when compared with the latter. No differences between conventional and organic management were observed. We did not identify any genotypes performing better in a specific production system. On average, the local clones had twofold and five times higher yields than the international ones and the full-sib families, respectively. This was related to their higher total pod load, bigger pods and higher yield efficiency, i.e., higher yield per unit of tree biomass. However, the local clones had less flowering intensity, more cherelle wilt and similar losses due to fungal diseases to those of the international clones. This study clearly shows the need to invest in selection and breeding programmes using locally-selected genetic material to increase cacao production and support renovation/rehabilitation plans. Breeding genetic material that is adapted to low light intensities is crucial to close the yield gap between monocultures and agroforestry systems, and to further promote the adoption of the latter.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3