Examining the impact of agricultural drainage ditch management on in-stream bacterial communities involved in nitrogen cycling: insights from the Environmental Change One Health Observatory (ECO2)

Author:

Guo Galen,Lapen David R.,Khan Izhar U. H.,Sunohara Mark,Craiovan Emilia,Chen Wen

Abstract

IntroductionAgricultural drainage ditches are essential for maintaining flow efficiency and are often managed by brushing (i.e., vegetation clearing along ditch banks) and dredging. These maintenance practices not only impact flow but also the ditches’ capacity to process and assimilate agricultural chemicals. However, the influence of ditch management on microbial activities, essential in processing and transforming these contaminants, remains underexplored.MethodsWe conducted a four-year surface water sampling campaign in two long-established (over 40 years) agricultural drainage ditches situated in eastern Ontario, Canada. One drainage ditch underwent intensive bank brushing and channel dredging, while the other remained unmanaged. We assessed the impact of these contrasting ditch management practices on the diversity and compositional structure of surface water microbiome communities, with a particular focus on the distribution of genes associated with nitrogen (N) cycling, using shotgun metagenomics sequencing and an assembly-based metagenome approach.Results and discussionFrom 117 surface water samples, we reconstructed 157 metagenome-assembled genomes (MAGs), predominantly from the Patescibacteria superphylum. Brushing alone, conducted about 10 months prior to dredging, had an insignificant impact on the aquatic microbial community. However, dredging led to a significant reduction in community diversity and abundance of genes affiliated with denitrification, dissimilatory nitrate reduction to ammonia, and complete nitrification through comammox. Ditch management resulted in noticeable shifts in the microbial community, evidenced by the enrichment of taxa in Polaromonas, Emticicia, Flectobacillus, and Patescibacteria in the water of the managed ditch sites. The metagenomes of these taxa harbor genes involved in various nitrogen biotransformation pathways. Interestingly, following dredging, the levels of ammonia and ammonium, nitrite, and total Kjeldahl N in the managed ditch did not increase, but significantly decreased; likely due to ditch substrate removal and potentially increased flow efficiency and dilution. Being one of the few studies conducted to date, this study provided unique insights into the consequences of drainage ditch management on freshwater microbiomes involved in N cycling.

Publisher

Frontiers Media SA

Reference103 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3