Single nucleotide polymorphisms and sickle cell disease-related pain: a systematic review

Author:

Gehling Gina M.,Powell-Roach Keesha,Wilkie Diana J.,Dungan Jennifer R.

Abstract

BackgroundScientists have speculated genetic variants may contribute to an individual's unique pain experience. Although research exists regarding the relationship between single nucleotide polymorphisms and sickle cell disease-related pain, this literature has not been synthesized to help inform future precision health research for sickle cell disease-related pain. Our primary aim of this systematic review was to synthesize the current state of scientific literature regarding single nucleotide polymorphisms and their association with sickle cell disease-related pain.MethodsUsing the Prisma guidelines, we conducted our search between December 2021–April 2022. We searched PubMed, Web of Science, CINAHL, and Embase databases (1998–2022) and selected all peer-reviewed articles that included reports of associations between single nucleotide polymorphisms and sickle cell disease-related pain outcomes.ResultsOur search yielded 215 articles, 80 of which were duplicates, and after two reviewers (GG, JD) independently screened the 135 non-duplicate articles, we retained 22 articles that met the study criteria. The synthesis of internationally generated evidence revealed that this scientific area remains predominantly exploratory in nature, with only three studies reporting sufficient power for genetic association. Sampling varied across studies with a range of children to older adults with SCD. All of the included articles (n = 22) examined acute pain, while only nine of those studies also examined chronic pain.ConclusionCurrently, the evidence implicating genetic variation contributing to acute and chronic sickle cell disease-related pain is characterized by modestly powered candidate-gene studies using rigorous SCD-pain outcomes. Effect sizes and directions vary across studies and are valuable for informing the design of future studies. Further research is needed to replicate these associations and extend findings with hypothesis-driven research to inform precision health research.

Publisher

Frontiers Media SA

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3