Establishment and validation of a prediction model for apnea on bronchiolitis

Author:

Xu Qiuyan,Shen Li,Lu Min,Ran Shuangqin,Jiang Wujun,Hua Jun,Li Linlin

Abstract

ObjectiveThe objective of this study is to examine the risk factors associated with apnea in hospitalized patients diagnosed with bronchiolitis and to develop a nomogram prediction model for the early identification of patients who are at risk of developing apnea.MethodsThe clinical data of patients diagnosed with acute bronchiolitis and hospitalized at the Children's Hospital of Nanjing Medical University between February 2018 and May 2021 were retrospectively analyzed. LASSO regression and logistic regression analysis were used to determine the risk factors for apnea in these patients. A nomogram was constructed based on variables selected through multivariable logistic regression analysis. Receiver operating characteristic (ROC) curve and calibration curve were used to assess the accuracy and discriminative ability of the nomogram model, and decision curve analysis (DCA) was performed to evaluate the model's performance and clinical effectiveness.ResultsA retrospective analysis was conducted on 613 children hospitalized with bronchiolitis, among whom 53 (8.6%) experienced apnea. The results of Lasso regression and Logistic regression analyses showed that underlying diseases, feeding difficulties, tachypnea, WBC count, and lung consolidation were independent risk factors for apnea. A nomogram prediction model was constructed based on the five predictors mentioned above. After internal validation, the nomogram model demonstrated an AUC of 0.969 (95% CI 0.951–0.987), indicating strong predictive performance for apnea in bronchiolitis. Calibration curve analysis confirmed that the nomogram prediction model had good calibration, and the clinical decision curve analysis (DCA) indicated that the nomogram was clinically useful in estimating the net benefit to patients.ConclusionIn this study, a nomogram model was developed to predict the risk of apnea in hospitalized children with bronchiolitis. The model showed good predictive performance and clinical applicability, allowing for timely identification and intensified monitoring and treatment of high-risk patients to improve overall clinical prognosis.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3