Analysis of risk factors and construction of a prediction model for short stature in children

Author:

Huang Shaojun,Chen Zhiqi,Chen Rongping,Zhang Zhen,Sun Jia,Chen Hong

Abstract

BackgroundShort stature in children is an important global health issue. This study aimed to analyze the risk factors associated with short stature and to construct a clinical prediction model and risk classification system for short stature.MethodsThis cross-sectional study included 12,504 children aged 6–14 years of age from 13 primary and secondary schools in Pingshan District, Shenzhen. A physical examination was performed to measure the height and weight of the children. Questionnaires were used to obtain information about children and their parents, including sex, age, family environment, social environment, maternal conditions during pregnancy, birth and feeding, and lifestyle. The age confounding variable was adjusted through a 1 : 1 propensity score matching (PSM) analysis and 1,076 children were selected for risk factor analysis.ResultsThe prevalence of short stature in children aged 6–14 years was 4.3% in the Pingshan District, Shenzhen. The multivariate logistic regression model showed that the influencing factors for short stature were father's height, mother's height, annual family income, father's level of education and parents’ concern for their children's height in the future (P < 0.05). Based on the short stature multivariate logistic regression model, a short stature nomogram prediction model was constructed. The area under the ROC curve (AUC) was 0.748, indicating a good degree of discrimination of the nomogram. According to the calibration curve, the Hosmer–Lemesio test value was 0.917, and the model was considered to be accurate. Based on a risk classification system derived from the nomogram prediction model, the total score of the nomogram was 127.5, which is considered the cutoff point to divides all children into low-risk and high-risk groups.ConclusionThis study analyzed the risk factors for short stature in children and constructed a nomogram prediction model and a risk classification system based on these risk factors, as well as providing short stature screening and assessment individually.

Publisher

Frontiers Media SA

Subject

Pediatrics, Perinatology and Child Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3