Synthesis and applications of graphene and graphene-based nanocomposites: Conventional to artificial intelligence approaches

Author:

Tariq Waheed,Ali Faizan,Arslan Chaudhry,Nasir Abdul,Gillani Syed Hamza,Rehman Abdul

Abstract

Recent advances in graphene research have enabled the utilization of its nanocomposites for numerous energy-based and environmental applications. Recently, the advancement in graphene-based polymer nanocomposites has received much attention with special emphasis on synthesis and application. Graphene-based nanocomposites show astonishing electrical, mechanical, chemical, and thermal characteristics. Graphene nanocomposites (GNCs) are synthesized using a variety of methods, including covalent and non-covalent methods, a chemical-based deposition approach, hydrothermal growth, electrophoresis deposition, and physical deposition. Chemical methods are the most viable route for producing graphene in small quantities at low temperatures. The technique can also produce graphene films on a variety of substrate materials. The use of artificial intelligence (AI) for the synthesis of AI-created nanoparticles has recently received a lot of attention. These nanocomposite materials have excellent applications in the environmental, energy, and agricultural sectors. Due to high carrier mobility, graphene-based materials enhance the photocatalytic performance of semiconductor materials. Similarly, these materials have high potential for pollutant removal, especially heavy metals, due to their high surface area. This article highlights the synthesis of graphene-based nanocomposites with special reference to harnessing the power of modern AI tools to better understand GNC material properties and the way this knowledge can be used for its better applications in the development of a sustainable future.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3