Mapping Transcriptome Data to Protein–Protein Interaction Networks of Inflammatory Bowel Diseases Reveals Disease-Specific Subnetworks

Author:

Maden Sefika Feyza,Acuner Saliha Ece

Abstract

Inflammatory bowel disease (IBD) is the common name for chronic disorders associated with the inflammation of the gastrointestinal tract. IBD is triggered by environmental factors in genetically susceptible individuals and has a significant number of incidences worldwide. Crohn’s disease (CD) and ulcerative colitis (UC) are the two distinct types of IBD. While involvement in ulcerative colitis is limited to the colon, Crohn’s disease may involve the whole gastrointestinal tract. Although these two disorders differ in macroscopic inflammation patterns, they share various molecular pathogenesis, yet the diagnosis can remain unclear, and it is important to reveal their molecular signatures in the network level. Improved molecular understanding may reveal disease type-specific and even individual-specific targets. To this aim, we determine the subnetworks specific to UC and CD by mapping transcriptome data to protein–protein interaction (PPI) networks using two different approaches [KeyPathwayMiner (KPM) and stringApp] and perform the functional enrichment analysis of the resulting disease type-specific subnetworks. TP63 was identified as the hub gene in the UC-specific subnet and p63 tumor protein, being in the same family as p53 and p73, has been studied in literature for the risk associated with colorectal cancer and IBD. APP was identified as the hub gene in the CD-specific subnet, and it has an important role in the pathogenesis of Alzheimer’s disease (AD). This relation suggests that some similar genetic factors may be effective in both AD and CD. Last, in order to understand the biological meaning of these disease-specific subnets, they were functionally enriched. It is important to note that chemokines—special types of cytokines—and antibacterial response are important in UC-specific subnets, whereas cytokines and antimicrobial responses as well as cancer-related pathways are important in CD-specific subnets. Overall, these findings reveal the differences between IBD subtypes at the molecular level and can facilitate diagnosis for UC and CD as well as provide potential molecular targets that are specific to disease subtypes.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A personalized pathway activation inference method based on pathway structure for classification of inflammatory bowel disease;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

2. Inflammatory bowel disease: A potential pathogenic factor of Alzheimer's disease;Progress in Neuro-Psychopharmacology and Biological Psychiatry;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3