Clinical and functional analyses of the novel STAR c.558C>A in a patient with classic lipoid congenital adrenal hyperplasia

Author:

Liu Jie,Dai Hong-Mei,Guang Gao-Peng,Hu Wen-Mu,Jin Ping

Abstract

Objective: Congenital lipid adrenal hyperplasia (LCAH) is the most serious type of congenital adrenal hyperplasia and is caused by steroid-based acute regulatory (STAR) protein mutations. Herein, we report compound heterozygous mutations c.558C>A (p.S186 R) and c.772C>T (p.Q258*) in a newborn 46 XY patient diagnosed with classic LCAH and explore their clinical and functional characteristics.Methods: Peripheral blood samples were collected from LCAH patient and their families. The pathogenic variant identified by whole-exome sequencing was further confirmed by Sanger sequencing and pedigree verification. The functional consequence and ability to convert cholesterol into progesterone of the identified STAR Q258* and S186 R mutations were analyzed by cell transfection and in vitro assays.Results: The proband was presented with severe glucocorticoid and mineralocorticoid deficiency, high adrenocorticotropic hormone, and enlarged adrenals. Heterozygous mutations p. S186 R and p. Q258* in the STAR gene were identified in the patient, and her parents were carriers, which is consistent with an autosomal recessive disorder. The STAR p. Q258* mutation has been reported and generates a truncated protein. The p. S186 R mutation is a novel variant that disrupts STAR. The residual STAR activities of p. S186R, p. Q258*, and p. S186R/p.Q258* were 13.9%, 7.3%, and 11.2%, respectively, of the wild-type, proving the main negative effects of the mutant proteins.Conclusion: Our findings reveal the molecular mechanisms underlying LCAH pathogenesis, further expanding the genotype and clinical spectrum of LCAH.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Familial Glucocorticoid Deficiency: the changing landscape of an eponymous syndrome;Frontiers in Endocrinology;2023-12-21

2. Molecular tools for diagnosing diseases of the adrenal cortex;Current Opinion in Endocrinology, Diabetes & Obesity;2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3