Differential Expression of Metabolism-Related Genes in Plateau Pika (Ochotona curzoniae) at Different Altitudes on the Qinghai–Tibet Plateau

Author:

Zhu Hongjuan,Zhong Liang,Li Jing,Wang Suqin,Qu Jiapeng

Abstract

According to life history theory, animals living in extreme environments have evolved specific behavioral and physiological strategies for survival. However, the genetic mechanisms underpinning these strategies are unclear. As the highest geographical unit on Earth, the Qinghai–Tibet Plateau is characterized by an extreme environment and climate. During long-term evolutionary processes, animals that inhabit the plateau have evolved specialized morphological and physiological traits. The plateau pika (Ochotona curzoniae), one of the native small mammals that evolved on the Qinghai–Tibet Plateau, has adapted well to this cold and hypoxic environment. To explore the genetic mechanisms underlying the physiological adaptations of plateau pika to extremely cold ambient temperatures, we measured the differences in resting metabolic rate (RMR) and metabolism-related gene expression in individuals inhabiting three distinct altitudes (i.e., 3,321, 3,663, and 4,194 m). Results showed that the body mass and RMR of plateau pika at high- and medium-altitudes were significantly higher than those at the low-altitude. The expression levels of peroxisome proliferator-activated receptor α (pparα), peroxisome proliferator-activated receptor-γ coactivator-1α (pgc-1α), and the PR domain-containing 16 (PRDM16) in white (WAT) and brown (BAT) adipose tissues of plateau pika from high- and medium-altitudes were significantly higher than in pika from the low-altitude region. The enhanced expression levels of pgc-1α and pparα genes in the WAT of pika at high-altitude showed that WAT underwent “browning” and increased thermogenic properties. An increase in the expression of uncoupling protein 1 (UCP1) in the BAT of pika at high altitude indicated that BAT increased their thermogenic properties. The gene expression levels of pparα and pgc-1α in skeletal muscles were significantly higher in high-altitude pika. Simultaneously, the expression of the sarcolipin (SLN) gene in skeletal muscles significantly increased in high-altitude pika. Our results suggest that plateau pika adapted to an extremely cold environment via browning WAT, thereby activating BAT and enhancing SLN expression to increase non-shivering thermogenesis. This study demonstrates that plateau pika can increase thermogenic gene expression and energy metabolism to adapt to the extreme environments on the plateau.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3