Identifying missing pieces in color vision defects: a genome-wide association study in Silk Road populations

Author:

Nardone Giuseppe Giovanni,Spedicati Beatrice,Concas Maria Pina,Santin Aurora,Morgan Anna,Mazzetto Lorenzo,Battaglia-Parodi Maurizio,Girotto Giorgia

Abstract

Introduction: Color vision defects (CVDs) are conditions characterized by the alteration of normal trichromatic vision. CVDs can arise as the result of alterations in three genes (OPN1LW, OPN1MW, OPN1SW) or as a combination of genetic predisposition and environmental factors. To date, apart from Mendelian CVDs forms, nothing is known about multifactorial CVDs forms.Materials and Methods: Five hundred and twenty individuals from Silk Road isolated communities were genotyped and phenotypically characterized for CVDs using the Farnsworth D-15 color test. The CVDs traits Deutan-Protan (DP) and Tritan (TR) were analysed. Genome Wide Association Study for both traits was performed, and results were corrected with a False Discovery Rate linkage-based approach (FDR-p). Gene expression of final candidates was investigated using a published human eye dataset, and pathway analysis was performed.Results: Concerning DP, three genes: PIWIL4 (FDR-p: 9.01*10–9), MBD2 (FDR-p: 4.97*10–8) and NTN1 (FDR-p: 4.98*10–8), stood out as promising candidates. PIWIL4 is involved in the preservation of Retinal Pigmented Epithelium (RPE) homeostasis while MBD2 and NTN1 are both involved in visual signal transmission. With regards to TR, four genes: VPS54 (FDR-p: 4.09*10–9), IQGAP (FDR-p: 6,52*10–10), NMB (FDR-p: 8.34*10–11), and MC5R (FDR-p: 2.10*10–8), were considered promising candidates. VPS54 is reported to be associated with Retinitis pigmentosa; IQGAP1 is reported to regulate choroidal vascularization in Age-Related Macular Degeneration; NMB is involved in RPE homeostasis regulation; MC5R is reported to regulate lacrimal gland function.Discussion: Overall, these results provide novel insights regarding a complex phenotype (i.e., CVDs) in an underrepresented population such as Silk Road isolated communities.

Funder

Ministero dell'Università e della Ricerca

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3