Infertility control of transgenic fluorescent zebrafish with targeted mutagenesis of the dnd1 gene by CRISPR/Cas9 genome editing

Author:

Chu Wai-Kwan,Huang Shih-Chin,Chang Ching-Fong,Wu Jen-Leih,Gong Hong-Yi

Abstract

Transgenic technology and selective breeding have great potential for the genetic breeding in both edible fish and ornamental fish. The development of infertility control technologies in transgenic fish and farmed fish is the critical issue to prevent the gene flow with wild relatives. In this study, we report the genome editing of the dead end (dnd1) gene in the zebrafish model, using the CRISPR/Cas9 technology to achieve a loss-of-function mutation in both wild-type zebrafish and transgenic fluorescent zebrafish to develop complete infertility control technology of farmed fish and transgenic fish. We effectively performed targeted mutagenesis in the dnd1 gene of zebrafish with a single gRNA, which resulted in a small deletion (−7 bp) or insertion (+41 bp) in exon 2, leading to a null mutation. Heterozygotes and homozygotes of dnd1-knockout zebrafish were both selected by genotyping in the F1 and F2 generations. Based on a comparison of histological sections of the gonads between wild-type, heterozygous, and homozygous dnd1 zebrafish mutants, the dnd1 homozygous mutation (aa) resulted in the loss of germ cells. Still, there was no difference between the wild-type (AA) and dnd1 heterozygous (Aa) zebrafish. The homozygous dnd1 mutants of adult zebrafish and transgenic fluorescent zebrafish became all male, which had normal courtship behavior to induce wild-type female zebrafish spawning. However, they both had no sperm to fertilize the spawned eggs from wild-type females. Thus, all the unfertilized eggs died within 10 h. The targeted mutagenesis of the dnd1 gene using the CRISPR/Cas9 technology is stably heritable by crossing of fertile heterozygous mutants to obtain sterile homozygous mutants. It can be applied in the infertility control of transgenic fluorescent fish and genetically improved farmed fish by selective breeding to promote ecologically responsible aquaculture.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3