Knockdown of RIPK2 Inhibits Proliferation and Migration, and Induces Apoptosis via the NF-κB Signaling Pathway in Gastric Cancer

Author:

Yang Qian,Tian Shan,Liu Zhengru,Dong Weiguo

Abstract

RIPK2 is a 62 kDa protein and a member of the receptor interacting protein kinases (RIPK) family. It was previously demonstrated that RIPK2 might play a role in promoting malignant tumor progression; however, the precise function of RIPK2 in the onset and progression of gastric cancer (GC) remains unclear. In the current study, we investigated the role of RIPK2 in GC. First, we explored the expression levels of RIPK2 in multiple cancers, including GC, using a bioinformatics approach. We constructed the RIPK2-associated protein-protein interaction network using the search tool for the retrieval of interacting genes/proteins for gene ontology and Kyoto encyclopedia of genes and genomes analysis. Next, we compared the RIPK2 expression levels between GC cells and normal gastric mucosal epithelial cell (GES-1) using reverse transcription quantitative PCR analysis. We downregulated the expression of RIPK2 in GC cells to determine the effects of RIPK2 on cell growth, migration, and apoptosis. Finally, we used western blotting to investigate the RIPK2 downstream signaling pathway involved in the regulation of GC progression. Our results showed that RIPK2 was overexpressed in various tumor tissues, including GC, compared to non-cancer tissues. Moreover, RIPK2 expression was significantly upregulated in all four GC cell lines (MGC-803,SGC-7901, HGC-27 and AGS) comparing the GES-1 cells. Silencing of RIPK2 suppressed GC cell growth by inhibiting migration, and inducing apoptosis through the nuclear factor-κB (NF-κB) signaling pathway. In summary, we demonstrate that RIPK2 plays an important role in modulating GC cell proliferation, migration, and apoptosis through the NF-κB signaling pathway. Therefore, RIPK2 functions as a potential oncogene. We believe that RIPK2 can be used as a candidate biomarker, as well as a diagnostic tool, and the therapeutic target for GC.

Publisher

Frontiers Media SA

Subject

Genetics(clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3