Comparative study of the digestion and metabolism related genes’ expression changes during the postnatal food change in different dietary mammals

Author:

Yizhen Zhuma,Chen Lei,Jie Xiaodie,Shen Fujun,Zhang Liang,Hou Yusen,Li Lu,Yan Guoqiang,Zhang Xiuyue,Yang Zhisong

Abstract

The changes in the expression of genes related to digestion and metabolism may be various in different dietary mammals from juvenile to adult, especially, the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens), which were once carnivores but have shifted to being specialized bamboo eaters, are unique features of their changes are more unclear. To elucidate the changing patterns of gene expression related to digestion and metabolism from juvenile to adult in different dietary mammals, we performed transcriptome analysis of the liver or pancreas in giant and red pandas, herbivorous rabbits (Oryctolagus cuniculus) and macaques (Macaca mulatta), carnivorous ferrets (Mustela putorius furo), and omnivorous mice (Mus musculus) from juvenile to adult. During the transition from juvenile to adulthood, giant and red pandas, as well as rabbits and macaques, show significant upregulation of key genes for carbohydrate metabolism, such as starch hydrolysis and sucrose metabolism, and unsaturated fatty acid metabolism, such as linoleic acid, while there is no significant difference in the expression of key genes for fatty acid β-oxidation. A large number of amino acid metabolism related genes were upregulated in adult rabbits and macaques compared to juveniles. While adult giant and red pandas mainly showed upregulation of key genes for arginine synthesis and downregulation of key genes for arginine and lysine degradation. In adult stages, mouse had significantly higher expression patterns in key genes for starch hydrolysis and sucrose metabolism, as well as lipid and protein metabolism. In contrast to general expectations, genes related to lipid, amino acid and protein metabolism were significantly higher expressed in adult group of ferrets, which may be related to their high metabolic levels. Our study elucidates the pattern of changes in the expression of genes related to digestion and metabolism from juvenile to adult in different dietary mammals, with giant and red pandas showing adaptations associated with specific nutritional limitations of bamboo.

Funder

Sichuan Province Science and Technology Support Program

National Natural Science Foundation of China

Chengdu Giant Panda Breeding Research Foundation

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3