Distribution of a novel CYP2C haplotype in Native American populations

Author:

Fernandes Vanessa Câmara,Pretti Marco Antônio M.,Tsuneto Luiza Tamie,Petzl-Erler Maria Luiza,Suarez-Kurtz Guilherme

Abstract

The CYP2C19 gene, located in the CYP2C cluster, encodes the major drug metabolism enzyme CYP2C19. This gene is highly polymorphic and no-function (CYP2C19*2 and CYP2C19*3), reduced function (CYP2C19*9) and increased function (CYP2C19*17) star alleles (haplotypes) are commonly used to predict CYP2C19 metabolic phenotypes. CYP2C19*17 and the genotype-predicted rapid (RM) and ultrarapid (UM) CYP2C19 metabolic phenotypes are absent or rare in several Native American populations. However, discordance between genotype-predicted and pharmacokinetically determined CYP2C19 phenotypes in Native American cohorts have been reported. Recently, a haplotype defined by rs2860840T and rs11188059G alleles in the CYP2C cluster has been shown to encode increased rate of metabolism of the CYP2C19 substrate escitalopram, to a similar extent as CYP2C19*17. We investigated the distribution of the CYP2C:TG haplotype and explored its potential impact on CYP2C19 metabolic activity in Native American populations. The study cohorts included individuals from the One Thousand Genomes Project AMR superpopulation (1 KG_AMR), the Human Genome Diversity Project (HGDP), and from indigenous populations living in Brazil (Kaingang and Guarani). The frequency range of the CYP2C:TG haplotype in the study cohorts, 0.469 to 0.598, is considerably higher than in all 1 KG superpopulations (range: 0.014—to 0.340). We suggest that the high frequency of the CYP2C:TG haplotype might contribute to the reported discordance between CYP2C19-predicted and pharmacokinetically verified CYP2C19 metabolic phenotypes in Native American cohorts. However, functional studies involving genotypic correlations with pharmacokinetic parameters are warranted to ascertain the importance of the CYP2C:TG haplotype.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3