Construction of artificial neural network diagnostic model and analysis of immune infiltration for periodontitis

Author:

Xiang Junwei,Huang Wenkai,He Yaodong,Li Yunshan,Wang Yuanyin,Chen Ran

Abstract

Background: Periodontitis is a chronic inflammatory disease leading to tooth loss in severe cases, and early diagnosis is essential for periodontitis prevention. This study aimed to construct a diagnostic model for periodontitis using a random forest algorithm and an artificial neural network (ANN).Methods: Gene expression data of two large cohorts of patients with periodontitis, GSE10334 and GSE16134, were downloaded from the Gene Expression Omnibus database. We screened for differentially expressed genes in the GSE10334 cohort, identified key periodontitis biomarkers using a Random Forest algorithm, and constructed a classification artificial neural network model, using receiver operating characteristic curves to evaluate its diagnostic utility. Furthermore, patients with periodontitis were classified using a consensus clustering algorithm. The immune infiltration landscape was assessed using CIBERSOFT and single-sample Gene Set Enrichment Analysis.Results: A total of 153 differentially expressed genes were identified, of which 42 were downregulated. We utilized 13 key biomarkers to establish a periodontitis diagnostic model. The model had good predictive performance, with an area under the receiver operative characteristic curve (AUC) of 0.945. The independent cohort (GSE16134) was used to further validate the model’s accuracy, showing an area under the receiver operative characteristic curve of 0.900. The proportion of plasma cells was highest in samples from patients with period ontitis, and 13 biomarkers were closely related to immunity. Two molecular subgroups were defined in periodontitis, with one cluster suggesting elevated levels of immune infiltration and immune function.Conclusion: We successfully identified key biomarkers of periodontitis using machine learning and developed a satisfactory diagnostic model. Our model may provide a valuable reference for the prevention and early detection of periodontitis.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3