A p53 transcriptional signature in primary and metastatic cancers derived using machine learning

Author:

Keshavarz-Rahaghi Faeze,Pleasance Erin,Kolisnik Tyler,Jones Steven J. M.

Abstract

The tumor suppressor gene, TP53, has the highest rate of mutation among all genes in human cancer. This transcription factor plays an essential role in the regulation of many cellular processes. Mutations in TP53 result in loss of wild-type p53 function in a dominant negative manner. Although TP53 is a well-studied gene, the transcriptome modifications caused by the mutations in this gene have not yet been explored in a pan-cancer study using both primary and metastatic samples. In this work, we used a random forest model to stratify tumor samples based on TP53 mutational status and detected a p53 transcriptional signature. We hypothesize that the existence of this transcriptional signature is due to the loss of wild-type p53 function and is universal across primary and metastatic tumors as well as different tumor types. Additionally, we showed that the algorithm successfully detected this signature in samples with apparent silent mutations that affect correct mRNA splicing. Furthermore, we observed that most of the highly ranked genes contributing to the classification extracted from the random forest have known associations with p53 within the literature. We suggest that other genes found in this list including GPSM2, OR4N2, CTSL2, SPERT, and RPE65 protein coding genes have yet undiscovered linkages to p53 function. Our analysis of time on different therapies also revealed that this signature is more effective than the recorded TP53 status in detecting patients who can benefit from platinum therapies and taxanes. Our findings delineate a p53 transcriptional signature, expand the knowledge of p53 biology and further identify genes important in p53 related pathways.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gain of Function (GOF) Mutant p53 in Cancer—Current Therapeutic Approaches;International Journal of Molecular Sciences;2022-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3