Capturing heart valve development with Gene Ontology

Author:

Ahmed Saadullah H.,Deng Alexander T.,Huntley Rachael P.,Campbell Nancy H.,Lovering Ruth C.

Abstract

Introduction: The normal development of all heart valves requires highly coordinated signaling pathways and downstream mediators. While genomic variants can be responsible for congenital valve disease, environmental factors can also play a role. Later in life valve calcification is a leading cause of aortic valve stenosis, a progressive disease that may lead to heart failure. Current research into the causes of both congenital valve diseases and valve calcification is using a variety of high-throughput methodologies, including transcriptomics, proteomics and genomics. High quality genetic data from biological knowledge bases are essential to facilitate analyses and interpretation of these high-throughput datasets. The Gene Ontology (GO, http://geneontology.org/) is a major bioinformatics resource used to interpret these datasets, as it provides structured, computable knowledge describing the role of gene products across all organisms. The UCL Functional Gene Annotation team focuses on GO annotation of human gene products. Having identified that the GO annotations included in transcriptomic, proteomic and genomic data did not provide sufficient descriptive information about heart valve development, we initiated a focused project to address this issue.Methods: This project prioritized 138 proteins for GO annotation, which led to the curation of 100 peer-reviewed articles and the creation of 400 heart valve development-relevant GO annotations.Results: While the focus of this project was heart valve development, around 600 of the 1000 annotations created described the broader cellular role of these proteins, including those describing aortic valve morphogenesis, BMP signaling and endocardial cushion development. Our functional enrichment analysis of the 28 proteins known to have a role in bicuspid aortic valve disease confirmed that this annotation project has led to an improved interpretation of a heart valve genetic dataset.Discussion: To address the needs of the heart valve research community this project has provided GO annotations to describe the specific roles of key proteins involved in heart valve development. The breadth of GO annotations created by this project will benefit many of those seeking to interpret a wide range of cardiovascular genomic, transcriptomic, proteomic and metabolomic datasets.

Funder

British Heart Foundation

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3