Platinum Nanoparticles in Biomedicine: Preparation, Anti-Cancer Activity, and Drug Delivery Vehicles

Author:

Abed Atena,Derakhshan Maryam,Karimi Merat,Shirazinia Matin,Mahjoubin-Tehran Maryam,Homayonfal Mina,Hamblin Michael R,Mirzaei Seyed Abbas,Soleimanpour Hamidreza,Dehghani Sadegh,Dehkordi Farnaz Farzaneh,Mirzaei Hamed

Abstract

Cancer is the main cause of morbidity and mortality worldwide, excluding infectious disease. Because of their lack of specificity in chemotherapy agents are used for cancer treatment, these agents have severe systemic side effects, and gradually lose their therapeutic effects because most cancers become multidrug resistant. Platinum nanoparticles (PtNPs) are relatively new agents that are being tested in cancer therapy. This review covers the various methods for the preparation and physicochemical characterization of PtNPs. PtNPs have been shown to possess some intrinsic anticancer activity, probably due to their antioxidant action, which slows tumor growth. Targeting ligands can be attached to functionalized metal PtNPs to improve their tumor targeting ability. PtNPs-based therapeutic systems can enable the controlled release of drugs, to improve the efficiency and reduce the side effects of cancer therapy. Pt-based materials play a key role in clinical research. Thus, the diagnostic and medical industries are exploring the possibility of using PtNPs as a next-generation anticancer therapeutic agent. Although, biologically prepared nanomaterials exhibit high efficacy with low concentrations, several factors still need to be considered for clinical use of PtNPs such as the source of raw materials, stability, solubility, the method of production, biodistribution, accumulation, controlled release, cell-specific targeting, and toxicological issues to human beings. The development of PtNPs as an anticancer agent is one of the most valuable approaches for cancer treatment. The future of PtNPs in biomedical applications holds great promise, especially in the area of disease diagnosis, early detection, cellular and deep tissue imaging, drug/gene delivery, as well as multifunctional therapeutics.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revolutionizing Cancer Care: Advances in Carbon-Based Materials for Diagnosis and Treatment;Cureus;2024-01-18

2. Different combination therapies pertaining to pancreatic cancer;Recent Advances in Nanocarriers for Pancreatic Cancer Therapy;2024

3. A Comprehensive Review on Antibacterial, Anti‐Inflammatory and Analgesic Properties of Noble Metal Nanoparticles;Particle & Particle Systems Characterization;2023-12-28

4. Nanomaterials as Theranostic Agents for Cancer Therapy;ACS Applied Nano Materials;2023-11-29

5. An Insight Into the Application of Nanotechnology in Biomedical Sciences;Cutting-Edge Applications of Nanomaterials in Biomedical Sciences;2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3