A multi-task FP-GNN framework enables accurate prediction of selective PARP inhibitors

Author:

Ai Daiqiao,Wu Jingxing,Cai Hanxuan,Zhao Duancheng,Chen Yihao,Wei Jiajia,Xu Jianrong,Zhang Jiquan,Wang Ling

Abstract

PARP (poly ADP-ribose polymerase) family is a crucial DNA repair enzyme that responds to DNA damage, regulates apoptosis, and maintains genome stability; therefore, PARP inhibitors represent a promising therapeutic strategy for the treatment of various human diseases including COVID-19. In this study, a multi-task FP-GNN (Fingerprint and Graph Neural Networks) deep learning framework was proposed to predict the inhibitory activity of molecules against four PARP isoforms (PARP-1, PARP-2, PARP-5A, and PARP-5B). Compared with baseline predictive models based on four conventional machine learning methods such as RF, SVM, XGBoost, and LR as well as six deep learning algorithms such as DNN, Attentive FP, MPNN, GAT, GCN, and D-MPNN, the evaluation results indicate that the multi-task FP-GNN method achieves the best performance with the highest average BA, F1, and AUC values of 0.753 ± 0.033, 0.910 ± 0.045, and 0.888 ± 0.016 for the test set. In addition, Y-scrambling testing successfully verified that the model was not results of chance correlation. More importantly, the interpretability of the multi-task FP-GNN model enabled the identification of key structural fragments associated with the inhibition of each PARP isoform. To facilitate the use of the multi-task FP-GNN model in the field, an online webserver called PARPi-Predict and its local version software were created to predict whether compounds bear potential inhibitory activity against PARPs, thereby contributing to design and discover better selective PARP inhibitors.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3