Personalized treatment for hepatocellular carcinoma in the era of targeted medicine and bioengineering

Author:

Sun Hang,Yang Huayu,Mao Yilei

Abstract

Hepatocellular carcinoma (HCC) is a major global health burden, causing approximately 8.3 million deaths each year, and it is the third leading cause of cancer-related death worldwide, with a relative 5-year survival rate of around 18%. Due to the advanced stage of diagnosis in most patients, systemic treatment based on targeted therapy has become the only feasible option. Genomic studies have established a profile of molecular alterations in hepatocellular carcinoma with potentially actionable mutations, but these mutations have yet to be translated into clinical practice. The first targeted drug approved for systemic treatment of patients with advanced hepatocellular carcinoma was Sorafenib, which was a milestone. Subsequent clinical trials have identified multiple tyrosine kinase inhibitors, such as Lenvatinib, Cabozantinib, and Regorafenib, for the treatment of hepatocellular carcinoma, with survival benefits for the patient. Ongoing systemic therapy studies and trials include various immune-based combination therapies, with some early results showing promise and potential for new therapy plans. Systemic therapy for hepatocellular carcinoma is complicated by the significant heterogeneity of the disease and its propensity for developing drug resistance. Therefore, it is essential to choose a better, individualized treatment plan to benefit patients. Preclinical models capable of preserving in vivo tumor characteristics are urgently needed to circumvent heterogeneity and overcome drug resistance. In this review, we summarize current approaches to targeted therapy for HCC patients and the establishment of several patient-derived preclinical models of hepatocellular carcinoma. We also discuss the challenges and opportunities of targeted therapy for hepatocellular carcinoma and how to achieve personalized treatment with the continuous development of targeted therapies and bioengineering technologies.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3