Neuroplasticity of the extended amygdala in opioid withdrawal and prolonged opioid abstinence

Author:

Kaplan Gary B.,Thompson Benjamin L.

Abstract

Opioid use disorder is characterized by excessive use of opioids, inability to control its use, a withdrawal syndrome upon discontinuation of opioids, and long-term likelihood of relapse. The behavioral stages of opioid addiction correspond with affective experiences that characterize the opponent process view of motivation. In this framework, active involvement is accompanied by positive affective experiences which gives rise to “reward craving,” whereas the opponent process, abstinence, is associated with the negative affective experiences that produce “relief craving.” Relief craving develops along with a hypersensitization to the negatively reinforcing aspects of withdrawal during abstinence from opioids. These negative affective experiences are hypothesized to stem from neuroadaptations to a network of affective processing called the “extended amygdala.” This negative valence network includes the three core structures of the central nucleus of the amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the nucleus accumbens shell (NAc shell), in addition to major inputs from the basolateral amygdala (BLA). To better understand the major components of this system, we have reviewed their functions, inputs and outputs, along with the associated neural plasticity in animal models of opioid withdrawal. These models demonstrate the somatic, motivational, affective, and learning related models of opioid withdrawal and abstinence. Neuroadaptations in these stress and motivational systems are accompanied by negative affective and aversive experiences that commonly give rise to relapse. CeA neuroplasticity accounts for many of the aversive and fear-related effects of opioid withdrawal via glutamatergic plasticity and changes to corticotrophin-releasing factor (CRF)-containing neurons. Neuroadaptations in BNST pre-and post-synaptic GABA-containing neurons, as well as their noradrenergic modulation, may be responsible for a variety of aversive affective experiences and maladaptive behaviors. Opioid withdrawal yields a hypodopaminergic and amotivational state and results in neuroadaptive increases in excitability of the NAc shell, both of which are associated with increased vulnerability to relapse. Finally, BLA transmission to hippocampal and cortical regions impacts the perception of conditioned aversive effects of opioid withdrawal by higher executive systems. The prevention or reversal of these varied neuroadaptations in the extended amygdala during opioid withdrawal could lead to promising new interventions for this life-threatening condition.

Funder

U.S. Department of Veterans Affairs

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3